News section
home news forum careers events suppliers solutions markets resources directories advertise contacts search site plan
 
.
Un premier pas vers le séquençage du génome du blé : la carte physique du plus grand de ses chromosomes
The first step towards sequencing the wheat genome: the physical map of its largest chromosome
A giant leap for wheat genome

.

Paris, France
October 2, 2008

Source: INRA

Une équipe internationale menée par des chercheurs de l'INRA de Clermont-Ferrand, Toulouse et Versailles, vient de réaliser la première carte physique d'un chromosome du blé. Ceci constitue un exploit sans précédent : en effet, le blé est une espèce dont le séquençage et l'exploration moléculaire à large échelle étaient considérés jusqu’à présent comme impossibles à cause de la taille et la complexité de son génome. Ces travaux, qui ouvrent la voie au séquençage total du génome du blé, ont été publiés dans la revue « SCIENCE » du 3 octobre 2008.

Le blé (Triticum aestivum L.), aliment de base pour 35% de la population mondiale, a une importance économique majeure. Cependant, les outils d'exploration de son génome sont très en retard par rapport à d'autres céréales comme le maïs, le riz ou le sorgho. De ce fait, l'amélioration du blé reste aujourd'hui trop lente au regard des défis que l’agriculture doit affronter. Ce retard est dû à la difficulté d'accès à un génome très particulier: d'une très grande taille (17 milliards de paires de bases, soit 5 fois le génome humain et 40 fois le génome du riz) et composé à 80% de séquences répétées.

Les cartes physiques sont le premier pas indispensable au séquençage des génomes. Les chercheurs de l’INRA et leurs collègues se sont focalisés sur le plus grand des chromosomes du blé, le chromosome 3B, qui compte près d'un milliard de paires de bases. La carte physique qu'ils ont réalisée de ce chromosome est composée d'une série de 1036 groupes de séquences d'ADN appelées contigs. Ces contigs, dont l'ordre a été établi grâce à 1443 marqueurs génétiques, permettent de reconstruire l'essentiel du chromosome 3B. Avant de venir à bout de cette tâche, les chercheurs ont dû faire face à de nombreuses difficultés, inhérentes au génome du blé. En effet, celui-ci est hexaploïde (6 jeux de chromosomes, 42 au total), contient un nombre élevé de séquences répétées et présente une faible variabilité génétique au sein des variétés cultivées.

Les cartes physiques constituent un outil précieux pour localiser rapidement des gènes d'intérêt agronomique et pour mettre au point de nouveaux marqueurs génétiques. Elles permettent l'exploration des régions du génome responsables de caractères d’intérêt agronomique comme le rendement, la qualité et la résistance aux stress. Comme première application de leurs travaux, les chercheurs ont localisé sur la carte physique du chromosome 3B certains gènes importants comme un gène de résistance à la rouille noire, maladie provoquée par un champignon.

Ces travaux ont été réalisés dans le cadre d’un projet pilote du consortium international pour le séquençage du génome de blé (1). Ils démontrent qu'il est possible de construire des cartes physiques pour des génomes complexes et de très grande taille. Ils serviront, dans un premier temps, comme modèle pour l'élaboration des cartes des autres chromosomes du blé et de support au séquençage prochain du chromosome 3B. D'un point de vue plus général, ces travaux constituent un jalon important dans l'analyse du génome d'autres espèces végétales réputées « impossibles ».


(1) IWGSC, www.wheatgenome.org

Références:

"A physical map of the 1Gb bread wheat chromosome 3B "
Etienne Paux 1, Pierre Sourdille 1, Jérôme Salse 1, Cyrille Saintenac 1, Frédéric Choulet 1, Philippe Leroy 1, Abraham Korol 2, Monika Michalak 3, Shahryar Kianian 3, Wolfgang Spielmeyer 4, Evans Lagudah 4, Daryl Somers 5, Andrzej Kilian 6, Michael Alaux 7, Sonia Vautrin 8, Hélène Bergès 8, Kellye Eversole 9, Rudi Appels 10, Jan Safar 11, Hana Simkova 11, Jaroslav Dolezel 11, Michel Bernard 1 and Catherine Feuillet 1
SCIENCE, 3 Octobre 2008
1 INRA-UBP, UMR1095, Genetics Diversity and Ecophysiology of Cereals, Clermont- Ferrand, France.
2 Institute of Evolution, University of Haifa, Israel.
3 Department of Plant Sciences, North Dakota State University, USA
4 CSIRO Plant Industry, Canberra, Australia.
5 Agriculture and Agri-Food Canada, Cereal Research Centre, Winnipeg, Canada.
6 Diversity Arrays Technology Pty Ltd, Yarralumla, Australia.
7 INRA-Unité de Recherches en Génomique-Info, Versailles, France.
8 INRA-Centre National de Ressources Génomiques Végétales, Toulouse, France.
9 International Wheat Genome Sequencing Consortium, Eversole Associates, Bethesda,
USA.
10 Centre for Comparative Genomics, Murdoch University, Australia.
11 Laboratory of Molecular Cytogenetics and Cytometry, IEB, Olomouc, Czech Republic.


The first step towards sequencing the wheat genome: the physical map of its largest chromosome

In an unprecedented achievement, an international team led by INRA researchers from Clermont-Ferrand, Toulouse and Versailles has completed the first physical map of the largest bread wheat chromosome. Until now, the bread wheat genome has been considered impossible to physically map and sequence because of its size and complexity. This work, published in the prestigious journal SCIENCE on 3 October 2008, opens the path towards sequencing the wheat genome.

Wheat (Triticum aestivum L.) is the staple food for 35% of the world’s population. Despite its socio-economic importance and the need for accelerated wheat genetic improvement to meet the challenges of agriculture, the tools for exploring the wheat genome are far less advanced than those developed for other cereals, such as corn, rice or sorghum. Both the size (17 billion base pairs - 5 times larger than the human genome and 40 times larger than the rice genome) and complexity (polyploid structure of 3 genomes with more than 80% of the genome composed of repetitive sequences) of the wheat genome have been stumbling blocks to traditional sequencing approaches until now.

The construction of a physical map is the first essential step towards sequencing a large genome. To reduce the complexity of mapping the entire hexaploid bread wheat genome, the INRA researchers and their colleagues have developed a strategy based on the isolation and analysis of each of the individual wheat chromosomes. They have focused first on the largest chromosome, 3B, which has nearly one billion base pairs (almost 3 times as many as the entire rice genome) to establish their proof of concept and the first physical map of a bread wheat chromosome. The 3B physical map is composed of a series of 1036 groups of DNA sequences called “contigs” that were anchored with 1443 molecular markers and ordered using a combination of different mapping approaches to reconstruct a large part of chromosome 3B. While completing this task, the researchers were faced with many difficulties inherent to the bread wheat genome, such as the lack of recombination in half of the chromosome and the reduced genetic variability found within cultivated varieties.

Physical maps constitute a precious tool for locating rapidly genes of agronomic interest and for identifying new molecular markers. They make it possible to explore regions of the genome responsible for agronomically important traits, such as yield, quality and stress resistance. As the first application of their work, the researchers located on the physical map of chromosome 3B some important genes, including a resistance gene to stem rust, a major fungal disease of wheat.

This research was conducted as a pilot project within the framework of the International Wheat Genome Sequencing Consortium (1). It shows that it is possible to construct physical maps for genomes with a chromosome-based approach regardless of the size and complexity. The work serves now as a model for other international groups to assemble the physical maps of the 20 other wheat chromosomes within the IWGSC and provides the basis for sequencing chromosome 3B in the near future. From a more general point of view, this work opens new perspectives for the analysis of genomes of other reputedly “impossible” plant species.


(1) IWGSC, www.wheatgenome.org

References:

"A physical map of the 1Gb bread wheat chromosome 3B "
SCIENCE, 3 October 2008

Etienne Paux1, Pierre Sourdille1, Jérôme Salse1, Cyrille Saintenac1, Frédéric Choulet1,
Philippe Leroy1, Abraham Korol2, Monika Michalak3, Shahryar Kianian3, Wolfgang Spielmeyer4, Evans Lagudah4, Daryl Somers5, Andrzej Kilian6, Michael Alaux7, Sonia Vautrin8, Hélène Bergès8, Kellye Eversole9, Rudi Appels10, Jan Safar11, Hana Simkova11, Jaroslav Dolezel11, Michel Bernard1 and Catherine Feuillet1
1INRA-UBP, UMR1095, Genetics Diversity and Ecophysiology of Cereals, Clermont- Ferrand, France.
2Institute of Evolution, University of Haifa, Israel.
3Department of Plant Sciences, North Dakota State University, USA
4CSIRO Plant Industry, Canberra, Australia.
5Agriculture and Agri-Food Canada, Cereal Research Centre, Winnipeg, Canada.
6Diversity Arrays Technology Pty Ltd, Yarralumla, Australia.
7INRA-Unité de Recherches en Génomique-Info, Versailles, France.
8INRA-Centre National de Ressources Génomiques Végétales, Toulouse, France.
9International Wheat Genome Sequencing Consortium, Eversole Associates, Bethesda, USA.
10Centre for Comparative Genomics, Murdoch University, Australia.
11Laboratory of Molecular Cytogenetics and Cytometry, IEB, Olomouc, Czech Republic.


A giant leap for wheat genome
By Elizabeth Pennisi

Source: ScienceNOW Daily News
2 October 2008

"Divide and conquer" has been a winning military strategy since Roman times. Now an international team has applied this approach to tackle the wheat genome, which is five times the size of the human genome and much more complicated. Plant geneticist Catherine Feuillet of INRA-UBP in Clermont-Ferrand, France, and her colleagues have isolated one of wheat's 42 chromosomes and made a physical map of it, placing more than 1400 molecular landmarks along its 995 million bases.

"For wheat researchers languishing in genomic poverty, this is the beginning of genomic empowerment," says Bikram Gill, a plant geneticist at Kansas State University in Manhattan. The map will not only assist in sequencing but also help researchers more easily find genes important to increasing yields and dealing with drought and disease.

Like computer memory, genome sequencing capacity has been rising exponentially and decreasing in cost, making possible the deciphering of ever-larger genomes. Nonetheless, the wheat genome has seemed too daunting, and not just because it's 17 gigabases long. Triticum aestivum contains three sets of chromosomes rolled into one nucleus. This so-called hexaploid arrangement arose in two steps. First, two wild grasses combined genomes to make what was the ancestor to durum (pasta) wheat. Later, this hybrid hybridized with another wild wheat species. The resulting genome has three sets of DNA--known as the A, B, and D genomes--which are quite similar but not identical.

Another complication is the fact that, like corn and the human genome, the bread wheat genome is rife with repetitive sequences. Repetitive DNA and similar sequences are a sequencer's nightmare because the sequence is generated in pieces that must be matched up correctly to figure out the order of the bases along each chromosome. The wheat genome "was thought to be intractable," says Gill.

To overcome these obstacles, Feuillet and her colleagues are attacking the bread wheat genome chromosome by chromosome--an early strategy used for sequencing the yeast genome and, initially, the human genome. She picked the largest, 3B (chromosome 3 of the B genome), which by itself is double the size of the entire rice genome, containing about 6000 genes. Her group teamed up with Jaroslav Dolezel of the Institute of Experimental Botany in Olomouc, Czech Republic, whose team has developed a way to sort similar chromosomes by size so as to be able to sequence each chromosome independently. In all, the researchers were able to position more than 1000 markers on the chromosome that will help them and others hunt for useful genes. The map is reported in tomorrow's issue of Science.

The divide-and-conquer tactic also puts financing--and sequencing--the entire wheat genome more in reach. "Chromosomes can be 'divided up' into manageable packages amongst the wheat groups in different countries," explains Graham Moore of the John Innes Centre in Norwich, U.K. For example, the French government is supporting Feuillet's completion of 3B, and the U.S. government is supporting Gill's mapping of several other chromosomes. Given that wheat feeds more than one-third of Earth's population, says Gill, "this is good news for world food security."

A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B
Etienne Paux, Pierre Sourdille, Jérôme Salse, Cyrille Saintenac, Frédéric Choulet, Philippe Leroy, Abraham Korol, Monika Michalak, Shahryar Kianian, Wolfgang Spielmeyer, Evans Lagudah, Daryl Somers, Andrzej Kilian, Michael Alaux, Sonia Vautrin, Hélène Bergès, Kellye Eversole, Rudi Appels, Jan Safar, Hana Simkova, Jaroslav Dolezel, Michel Bernard, and Catherine Feuillet (3 October 2008)
Science 322 (5898), 101. [DOI: 10.1126/science.1161847]

Abstract: http://www.sciencemag.org/cgi/content/abstract/sci;322/5898/101
 

 

 

French scientists reported this week that they have mapped the largest chromosome in the wheat genome, chromosome 3B, a feat reported in more detail in the current edition of the journal Science

 

The news item on this page is copyright by the organization where it originated - Fair use notice

Other news from this source


Copyright © SeedQuest - All rights reserved