News section
home news forum careers events suppliers solutions markets resources directories advertise contacts search site plan
 
.
New and improved tomato analyzer - Software proves versatile, accurate for measuring fruit shape and size

.

Wooster, Ohio
May 4, 2009
 

Improved software measures fruit shapes and eccentricity
Photo by Esther van der Knaap

Tomatoes come in a variety of sizes and shapes, making them the perfect subject to test shape-analyzing software. The Tomato Analyzer is "rapidly becoming the standard for fruit morphological characterizations," according to a study led by Marin Talbot Brewer of The Ohio State University's Department of Horticulture and Crop Science. Details of the team's latest Tomato Analyzer research were published in a recent issue of the Journal of the American Society for Horticultural Science.

Morphology studies the form and structure of organisms. Software such as the Tomato Analyzer aids in morphological research by providing accurate and objective measurements of fruit shape. The analysis is also more efficient for large numbers of subjects and can detect traits that are extremely difficult to quantify manually. The Tomato Analyzer uses mathematical descriptors to quantify various shape features based on the boundary of the fruit.

Morphometrics studies the quantitative analysis of the shape and size of a biological form using the position of and distance between landmarks. This method has been used to study variations, classifications, and evolutionary analyses, as well as genetic studies of animals and insects. Morphometric analysis is less biased and depends less on manual manipulation, but the results are abstract quantities. The Tomato Analyzer's results are more descriptive because they actually measure angles or include ratios that better explain the fruit shape. However, the Tomato Analyzer provides both methods in the same application, allowing the researcher to select the option that best suits the project's needs.

A main objective of the study was to investigate the quantitative trait loci (QTL), which are parts of the genetic code that control fruit shape. The QTL as determined by morphometric analysis and boundary analysis were then compared. A new set of measurements was added to the Tomato Analyzer software to calculate the area of the pericarp, septum, and placenta. These are internal segments of the fruit that help to explain the shape more thoroughly than the exterior silhouette alone.

In the 'Sausage' species of tomato, two loci were identified as controlling more than 50% of the internal shape index, which gives the tomato its elongated or "pear" shape. Visual observation supported that the software accurately measured the degree of pear shape. Additional tests to determine proximal end angle, the shape of the fruit nearest the stem, showed comparable results between the two methods. This adds to the software's versatility of measurements for researchers.

QTLs detected in 'Sausage' and 'Rio Grande' varieties of tomato overlapped significantly. Though most, if not all, of the QTL controlling fruit shape and size were identified using the Tomato Analyzer applications, morphometric analyses are an efficient way to investigate the various sizes and shapes of fruit. Because both types of analysis are available in the Tomato Analyzer, the software allows researchers to quickly note morphological variation with the morphometrics function and then delve more deeply into the details using the attribute function.

The complete study and abstract are available on the ASHS Journal of the American Society for Horticultural Science electronic journal web site: http://journal.ashspublications.org/cgi/content/abstract/134/1/77

Original Article

Tomato Fruit Shape Analysis Using Morphometric and Morphology Attributes Implemented in Tomato Analyzer Software Program
Maria Jose Gonzalo
Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691 and Dept. de Pomología, Estación Experimental de Aula Dei-CSIC, Apdo. 13034, 50080 Zaragoza, Spain
Marin Talbot Brewer, Claire Anderson and David Sullivan
Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691
Simon Gray
Department of Mathematics and Computer Science, The College of Wooster, Wooster, OH 44691
Esther van der Knaap
Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691

J. Amer. Soc. Hort. Sci. 2009 134:77-87. [Abstract] [Full Text] [PDF]

ABSTRACT

Reliable analysis of plant traits depends on the accuracy of scoring the phenotype. We report here on the efficacy of two methods in the detection of quantitative trait loci (QTL) controlling fruit morphology in three segregating tomato (Solanum spp.) F2 populations using the software program, Tomato Analyzer. The first method uses fruit morphology attributes such as fruit shape index, blockiness, pear shape, indentation area, and angles of the fruit along the boundary. The second method uses morphometric points to quantify shape. The morphometric data were subjected to principle components analysis (PCA). QTL that control the fruit morphology attributes and the morphometric PCA were identified that revealed that the methods were comparable in that they resulted in nearly identical loci. Novel attributes were added to Tomato Analyzer that improved versatility of the program in measuring additional morphological features of fruit. We demonstrated that these novel attributes permitted identification of QTL controlling the traits.

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at www.ashs.org 

 

 

 

 

 

 

 

 

 

 

 

more keyword news on

marker-assisted breeding

 

The news item on this page is copyright by the organization where it originated - Fair use notice

Other news from this source


Copyright © SeedQuest - All rights reserved