home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Bread for the world - wheat genome fully mapped
Brot für die Welt – Erbgut des Weizens vollständig kartiert


Germany
August 16, 2018

A thirteen-year scientific effort has culminated in a paper published in the journal ‘Science’: over 200 scientists from 73 research institutions in 20 countries joined forces to map the genome of bread wheat. Researchers from Helmholtz Zentrum München and the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben also played a leading role. It is hoped that the findings will open up new prospects for feeding the world’s population. 

The sequence published in ‘Science’ is the first nearly complete reference genome of wheat – a key tool for understanding, researching or improving the grain.

"It was long believed that it was impossible to sequence the bread-wheat genome in its entirety, because it is massive and complex," says Dr. Nils Stein, Head of the Research Group Genomics of Genetic Resources at the IPK in Gatersleben, in explanation of the challenge. "The wheat genome, five times bigger than the human genome, is divided into three subgenomes and is distributed over 21 chromosomes with numerous repeated elements."

As not even cutting-edge techniques are able to unravel the full length sequence of the genome, researchers had to improvise using sequenced genome fragments. The difficulty was to understand how the sub-sequences are arranged. To address this problem, the scientists developed special algorithms and new strategies to master this quintessentially ‘big data’ challenge.

"Once the final sequence was known, it was all about elucidating the content," explains Dr. Manuel Spannagl, Group Leader in the Research Unit Plant Genome and Systems Biology at Helmholtz Zentrum München. "Our task was to determine where, among billions of bases, specific genes are located and how they are organized: we were able to identify 107,891 genes*. In addition, more than four million molecular markers were annotated as well as regions between the genes that affect their activity."

The researchers who are all involved in the International Wheat Genome Sequencing Consortium (IWGSC) hope that their work will now lead to new wheat varieties that are better adapted to climatic challenges, deliver higher and, above all, more stable yields, and are even more nutritious. A further aim is to make the cultivation and utilization of wheat more sustainable. Wheat, after all, is and will remain a crucial crop for global food security: It is a staple food for over one-third of the world’s population and supplies almost 20 percent of the carbohydrates and proteins in people’s diet – more than any other food.

Six other papers accompany the publication of the complete wheat reference sequence, highlighting its benefits for the scientific community. Since a first working version of the complete sequence was released in January 2017, over 100 research papers based on the preliminary data have been published. That number is now expected to soar.

But, according to the German scientists, there’s still a lot of work to do: The now fully-sequenced and annotated ‘Chinese Spring’ wheat variety has been used around the world, mainly in basic research. Other lines which are frequently used among breeders and which characterize the genetic diversity of bread wheat, referred to as the pan-genome, are already being intensively pursued.**

Further Information

* By comparison: 20,376 genes are currently known in humans.

** Researchers from Munich and Gatersleben are sequencing the ‘Julius’ variety of wheat in the WHEATSEQ project, which is funded by the German Federal Ministry of Food and Agriculture (BMEL) (funding reference: 2819104015). The work is part of the international “10 Wheat Genome Project”, a program associated with the International Wheat Initiative. The program will provide detailed insight into the structural diversity and complexity of the wheat pan-genome and provide a basis for developing new wheat varieties.

Background:
Wheat is a staple food for over one-third of the world’s population. It also serves as an important source of vitamins and minerals. According to the statement from the IWGSC, "The wheat code is finally cracked". In order to meet the future needs of a projected world population of 9.6 billion (by 2050), wheat productivity has to increase by 1.6 percent per year. To conserve biodiversity as well as water and nutrient resources, most of this increase must be achieved by improving the crops themselves and their characteristics and by growing them on existing farmland rather than exploiting new land for cultivation.

In 2014, a team of scientists headed by Prof. Dr. Klaus Mayer, Head of the PGSB at Helmholtz Zentrum München and professor at the Technical University of Munich, published a draft sequence, a working version, of wheat. “The new paper is the logical next step forward in terms of quality,” as Mayer states.

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes, allergies and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Research Unit Plant Genome and Systems Biology (PGSB) plant genomics group focuses on the analysis of plant genomes, using bioinformatic techniques. To store and manage the data, we developed a database, PlantsDB, that aims to provide a data and information resource for individual plant species. In addition PlantsDB provides a platform for integrative and comparative plant genome research. http://pgsb.helmholtz-muenchen.de/plant/index.jsp

The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben is one of the world's leading international institutions in the field of plant genetics and crop science. Its research programme and services contribute materially to conserving, exploring and exploiting crop diversity. Its research goals are driven by the need to ensure an efficient and sustainable supply of food, energy and raw materials, thereby addressing a major global ecological challenge. http://www.ipk-gatersleben.de

Original publication:

International Wheat Genome Sequencing Consortium (2018): Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, DOI: 10.1126/science.aar7191


Brot für die Welt – Erbgut des Weizens vollständig kartiert

     Eine dreizehnjährige wissenschaftliche Kraftanstrengung findet ihren Höhepunkt in einer ‚Science‘-Publikation: Über 200 Wissenschaftlerinnen und Wissenschaftler aus 73 Forschungseinrichtungen in 20 Ländern haben gemeinsam das Genom des Brotweizen kartiert. Federführend daran beteiligt waren auch Forschende des Helmholtz Zentrums München und des Leibniz-Instituts für Pflanzengenetik und Kulturpflanzenforschung (IPK) Gatersleben. Durch die Erkenntnisse erhoffen sich die Beteiligten neue Perspektiven für die Welternährung. +++ Embargo 16. August, 20 Uhr MESZ +++

Bei der in ‚Science‘ publizierten Sequenz handelt es sich um das erstmals weitestgehend vollständige Referenzgenom von Weizen – eine gemeinsame Grundlage für alle, die den Weizen verstehen, erforschen oder verbessern wollen.

„Die vollständige Sequenzierung des Genoms von Brotweizen wurde lange Zeit für unmöglich gehalten, da es enorm groß und komplex ist“, verdeutlicht Dr. Nils Stein, Leiter der Arbeitsgruppe Genomik Genetischer Ressourcen am IPK in Gatersleben, die Herausforderung. „Das Fünffache des menschlichen Genoms verteilt sich nochmal auf drei Subgenome und organisiert sich über 21 Chromosomen mit zahlreichen sich wiederholenden Elementen.“

Da auch modernste Technologien die Basenabfolge des Erbguts nicht im Ganzen entschlüsseln können, standen den Forschern immer nur Fragmente des Genoms zur Verfügung. Entsprechend schwierig war es, den korrekten Zusammenbau dieser Teilsequenzen nachzuvollziehen. Hierfür entwickelten die Wissenschaftler spezielle Algorithmen und neue Strategien, um diesen sprichwörtlichen ‚Big Data‘ Herr zu werden.

„Nachdem die finale Sequenz bekannt war, ging es an die Inhalte“, erklärt Dr. Manuel Spannagl, Gruppenleiter in der Abteilung Genomik und Systembiologie pflanzlicher Genome am Helmholtz Zentrum München. „Unsere Aufgabe war es, aus den Milliarden von Basen herauszulesen, welche Gene wo liegen und wie sie organisiert sind: 107.891 Gene konnten wir kartieren*. Hinzu kamen mehr als vier Millionen molekulare Marker sowie Sequenzinformationen über die Bereiche dazwischen, die die Aktivität der einzelnen Gene beeinflussen.“

Nun hoffen alle beteiligten Forscherinnen und Forscher, die sich unter dem Dach des International Wheat Genome Sequencing Consortium (IWGSC) versammelt haben, dass durch ihre Arbeit neue Weizensorten gezüchtet werden können, die besser an klimatische Herausforderungen angepasst sind, höhere und vor allem stabilere Erträge liefern sowie höhere Nährstoffqualitäten aufweisen. Zudem sollen der Anbau und die Verwertung des Weizens nachhaltiger werden. Denn Weizen ist und bleibt eine Schlüsselpflanze für die weltweite Ernährungssicherung: Er stellt das Grundnahrungsmittel von mehr als einem Drittel der Weltbevölkerung dar und macht fast 20 Prozent der Kohlenhydrate und Eiweiße in unserer Nahrung aus – mehr als jedes andere Nahrungsmittel.

Sechs weitere Veröffentlichungen begleiten die Publikation der vollständigen Weizen-Referenzsequenz und unterstreichen deren Nutzen für die wissenschaftliche Gemeinschaft. Seit der Bereitstellung einer ersten Arbeitsversion der heute veröffentlichten vollständigen Sequenz im Januar 2017, wurden über 100 Forschungsarbeiten mit diesen vorläufigen Daten veröffentlicht. Diese Zahl wird ab heute rasant wachsen.

Doch die Arbeit ist nach Aussage der deutschen Wissenschaftler noch nicht getan: Die in der aktuellen Studie vollständig sequenzierte und annotierte Weizensorte ‚Chinese Spring‘, wurde bisher weltweit vor allem in der Grundlagenforschung genutzt. Weitere landwirtschaftlich genutzte Linien, deren Erbgut insgesamt als Pan-Genom bezeichnet wird und die genetische Vielfalt des Brotweizens charakterisiert, werden bereits intensiv bearbeitet.**

Weitere Informationen

* Zum Vergleich: Beim Menschen sind aktuell 20.376 Gene bekannt

** Im vom Bundesministerium für Ernährung und Landwirtschaft (BMEL) geförderten Projekt WHEATSEQ (Förderkennzeichen: 2819104015) arbeiten Münchner und Gaterslebener Forscher an der Sequenzierung der Weizensorte ‚Julius‘. Die Arbeiten sind Bestandteil des internationalen „10 Weizengenomprojekt“ einem assoziierten Programm der Internationalen Weizen Initiative. Das Programm wird einen hochauflösenden Einblick in das Ausmaß der strukturellen Vielfalt und die Komplexität des Pan-Genoms von Weizen liefern und für eine gezieltere Züchtung nutzbar machen.

Hintergrund:
Weizen stellt das Grundnahrungsmittel von mehr als einem Drittel der Weltbevölkerung dar. Zudem dient er als eine wichtige Quelle von Vitaminen und Mineralien. Um den zukünftigen Anforderungen einer prognostizierten Weltbevölkerung von 9,6 Milliarden Menschen (bis 2050) gerecht zu werden, muss die Weizenproduktivität jedes Jahr um 1,6 Prozent steigen, so das IWGSC in seiner Mitteilung „The wheat code is finally cracked“. Um die Artenvielfalt, die Wasser- und Nährstoffressourcen zu erhalten, müsse der Großteil dieses Anstiegs durch eine Verbesserung der Kulturpflanzen selbst und deren Eigenschaften auf den derzeit kultivierten Flächen erzielt werden, anstatt neue Flächen für den Anbau zu verbrauchen.

Bereits 2014 hatten die Wissenschaftler um Prof. Dr. Klaus Mayer, Leiter der PGSB am Helmholtz Zentrum München und Professor an der Technischen Universität München, eine sogenannte „draft sequenz“, eine Arbeitsversion des Weizens veröffentlicht. „Qualitativ ist die neue Veröffentlichung nun der logische nächste Schritt“, so Mayer.

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus, Allergien und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Der Schwerpunkt der selbstständigen Abteilung Genomik und Systembiologie pflanzlicher Genome (PGSB) ist die Genom- und Systemorientierte Bioinformatik pflanzlicher Genome. In diesem Rahmen werden Genomverschlüsselungen, Expressionsmuster, funktionelle und systembiologische Fragestellungen untersucht. PGSB verwaltet außerdem einen großen Datensatz pflanzlicher Genome in Datenbanken und macht diese zusammen mit vergleichenden Analysen der Öffentlichkeit zugänglich. http://pgsb.helmholtz-muenchen.de/plant/index.jsp

Das Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben ist eine außeruniversitäre, mit Bundes- und Ländermitteln geförderte Forschungseinrichtung und Mitglied der Leibniz-Gemeinschaft. Am IPK forschen und arbeiten mehr als 500 Mitarbeiter/-innen aus über 30 Nationen. Zentrales Anliegen der wissenschaftlichen Arbeiten am IPK ist die Untersuchung der genetischen Vielfalt von Kultur- und verwandten Wildpflanzen und der Prozesse, die zu ihrem Entstehen geführt haben. Daraus abgeleitet erfolgt die Aufklärung der molekularen Mechanismen, die zur Ausprägung und Variation pflanzlicher Merkmale beitragen. Hieraus erwachsende Erkenntnisse ermöglichen die Entwicklung und Anwendung von Strategien zu einer vertieften Charakterisierung und darauf aufbauend zu einer wissensbasierten Nutzbarmachung der in der Genbank vorgehaltenen pflanzengenetischen Ressourcen. http://www.ipk-gatersleben.de



More news from: Helmholtz Center for Environmental Research


Website: http://www.ufz.de

Published: August 17, 2018

The news item on this page is copyright by the organization where it originated
Fair use notice


Copyright @ 1992-2024 SeedQuest - All rights reserved