home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Oil from GM plants can substitute fish oil in fish feeds


United Kingdom
January 29, 2015

Copyright: Dr Eric Leclercq, University of Stirling

Oil derived from Camelina plants that have been genetically modified to produce omega-3 fish oils is suitable for feeding Atlantic salmon, scientists have shown.

Consumption of omega-3 fish oils, specifically long-chain polyunsaturated fatty acids (omega-3 LC-PUFA), through eating oily fish like salmon and mackerel, has been linked with improved cardiovascular health and cognitive development.

In a BBSRC-funded project between the University of Stirling and the BBSRC strategically-funded institute Rothamsted Research, scientists developed genetically modified (GM) plants that can produce up to 20% of eicosapentaenoic acid (EPA), one of the two omega-3 LC PUFA conferring health benefits.

The primary dietary sources of these fatty acids are wild or farmed fish. Fish accumulate the omega-3 fish oils through eating other organisms in the marine food chain or, in farmed fish, through fishmeal and fish oil in feeds. Currently there is a gap between supply and demand for these fish oils and new sources are required for the aquaculture industry and for direct human consumption.

Extracted oils from the plants grown in the glass house were used as a replacement for marine fish oil in feeds for Atlantic salmon. Growth performance, feed efficiency, fish health and nutritional quality for the human consumer were unaffected when dietary fish oil was substituted with oil from the GM plants. The study is published today in the journal Scientific Reports.

Rothamsted Research scientists have being carrying out research into metabolically engineering plants to produce omega-3 fish oils for more than 15 years. In the current study they used five microalgal and fungal genes to engineer Camelina plants (Camelina sativa) in order to generate a renewable terrestrial source of omega-3 fish oils.

Dr Monica Betancor, who carried out the experiments at the University of Stirling, said: "With this work we had the opportunity to test the potential of this novel source of EPA to substitute for fish oil in fish feeds. We used three diets, one containing the standard fish oil used routinely in the fish feed industry, one containing oil from Camelina plants that have not been genetically engineered and one that contained oil derived from plants that have been engineered to produce 20% EPA in their seeds. Each diet was tested with three separate groups of Atlantic salmon for seven weeks.

"At the end of the experiment we examined fish from the different treatments and found that the oil derived from the GM plants can effectively substitute for fish oil in salmon feeds. This is highly significant because fish oil is a finite and limited resource, very expensive and the increasing demands for it by the fish farming industry will not be met in the future. So we really need to develop effective alternatives like this one."

Professor Johnathan Napier, leading the GM Camelina programme of research at Rothamsted Research, said: "It is very exciting for us to see the results of this study. For us the development of metabolically engineered Camelina plants has been a fascinating project. The findings of the present study are very encouraging as we have always worked towards providing a sustainable source for the omega-3 fish oils - our results here confirm another step in that direction."

Professor Douglas Tocher, leading the salmon feeding study at the University of Stirling, added: "There is a fundamental lack of omega-3 LC-PUFA to satisfy the recommended dietary requirements for humans, and fish are our main dietary source. The development of these novel plant oils, tailored to human requirements, represent a sustainable way to farm fish with high levels of omega-3 fish oils that maintain their high nutritional value to the human consumer while preserving wild fish stocks."

Professor Christine Williams, University of Reading, an expert on the impact of dietary fats in human health who was not involved in the study, said: "Long chain omega 3 fats are essential components of the developing brain and play a vital role in maintaining heart health. However they are made in the body in only very small amounts and need to be supplied in the diet.

"Although fish are the richest dietary source of these fats there have been concerns about their low levels in farmed fish. In recent years fish farming has needed to use a mixture of fish oils and vegetable oils in the feeds of the fish due to the lack of availability and increasing costs of fish oils. This study showed this novel GM source of long chain omega-3 fats was able to replace fish oils. This will allow farmed fish – the major source of fish in the UK diet – to retain the levels of essential long chain omega-3 fats needed for human health."

 

The publication by Betancor, M.B. et al. A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Sci.Rep. 5, 8104; DOI: 10.1038/srep08104 (2015)

About the University of Stirling

As a top UK research-intensive university, Stirling is committed to carrying out research which has a positive impact on communities across the globe – addressing real issues, providing solutions and helping to shape society. Interdisciplinary in its approach, Stirling's research informs its teaching curriculum and facilitates opportunities for knowledge exchange and collaboration between staff, students, industry partners and the wider community. www.stir.ac.uk.

About Rothamsted Research

We are the longest running agricultural research station in the world, providing cutting-edge science and innovation for nearly 170 years. Our mission is to deliver the knowledge and new practices to increase crop productivity and quality and to develop environmentally sustainable solutions for food and energy production. Our strength lies in the integrated, multidisciplinary approach to research in plant, insect and soil science.

Rothamsted Research is strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC). In 2013-2014 Rothamsted Researched received a total of £32.9M from the BBSRC.



More news from:
    . BBSRC (Biotechnology and Biological Sciences Research Council)
    . Rothamsted Research


Website: http://www.bbsrc.ac.uk

Published: February 3, 2015

The news item on this page is copyright by the organization where it originated
Fair use notice

 

 

 

 

 

 

 

 

 

 


Copyright @ 1992-2024 SeedQuest - All rights reserved