home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Rubber from dandelions - Scientists identify key components in the formation of rubber
Gummi aus Löwenzahn - Wissenschaftler identifizieren Schlüsselkomponenten der Kautschuk-Entstehung 


Munich, Germany
April 28, 2015

Gummi aus Löwenzahn - Bild: Ulrich Benz / TUM
Gummi aus Löwenzahn - Bild: Ulrich Benz / TUM

Dandelions deliver a desirable product: rubber. This is why the robust and undemanding plants have become the focus of attention of the rubber-producing industry. But how is rubber, contained in the plant’s white milky fluid, actually formed? A team of scientists has now identified proteins, which play a key role in the production of rubber in the plant. Thus a biotechnological production of rubber comes closer.

The milky fluid containing the rubber is produced in special cells in the dandelion. Responsible for the formation – the biosynthesis – of the rubber is a protein complex located on the surface of so-called rubber particles. These globular particles are filled with polyisoprene, the main component of rubber, and are surrounded by a protective coating.

As the researchers at Münster University, the Münster branch of the Fraunhofer Institute for Molecular Biology and Applied Ecology IME, the Technische Universität München (TUM) and TRM Ltd. (York, UK) demonstrated, using the example of Russian dandelion, Taraxacum kok-saghyz, there is one special protein (a so-called rubber transferase activator) which plays a key role. If the formation of the protein is prevented – in other words, if it doesn’t exist in the plant – then no rubber is formed.

The scientists assume that the protein is necessary for the formation of the rubber-producing protein complex. Their results have been published in the current online issue of the journal "Nature Plants". A second study, which was carried out with substantial input from researchers from IME and Münster University, identifies a further important protein which plays a key role in the formation of the long polyisoprene chains. These polymers give the rubber its typical properties – its elasticity and resilience.

A long-standing collaboration exists between the research groups in Munich and Münster. "First we have contributed by labeling studies using stable isotopes to investigate the metabolic pathways for latex production," says Professor Wolfgang Eisenreich, biochemist at the TU München. Their contribution to the actual publication was the characterization of the polyisoprene based on NMR spectroscopic measurements.

Effective cooperation between basic and applied research

"Dandelions have become well-known recently in particular as a result of applied research," explains head of research Dr. Christian Schulze Gronover (IME, Münster branch). "Now we are pleased to have some news again from the field of basic research: we have been able to identify no fewer than two key components of rubber biosynthesis."

So far it has not been possible to manufacture natural rubber biotechnologically. But the identification of key components in rubber synthesis has brought this possibility a step closer, the researchers say. Dandelion plants that produce no rubber could be used in future laboratory experiments in order to examine the role of rubber in the plants. According to one idea under discussion, for example, it provides protection against pathogenic agents.

Dirk Prüfer, Professor of the Biotechnology of Plants at Münster University and head of the Functional and Applied Genomics department at the IME in Münster, points out: "We achieved these research results only through effective collaboration, through the intelligent linking of basic and applications-oriented research. We hope to expand this successful model further."

The research was supported by the German Federal Environmental Foundation (DBU) and the German Federal Ministry of Food and Agriculture.

Publications:

Janina Epping, Nicole van Deenen, Eva Niephaus, Anna Stolze, Julia Fricke, Claudia Huber, Wolfgang Eisenreich, Richard M. Twyman, Dirk Prüfer and Christian Schulze Gronover: A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nature Plants, Advance Online Publication, 27.04.2015; DOI: 10.1038/nplants.2015.48


Gummi aus Löwenzahn - Wissenschaftler identifizieren Schlüsselkomponenten der Kautschuk-Entstehung 

Aus Löwenzahn lässt sich ein begehrtes Produkt gewinnen: Kautschuk. Seit einigen Jahren rückt die robuste und anspruchslose Pflanze daher zunehmend in den Fokus der Gummi herstellenden Industrie. Doch wie entsteht der Kautschuk, der im weißen Milchsaft der Pflanze enthalten ist? Ein Wissenschaftlerteam hat nun Proteine identifiziert, die eine zentrale Rolle bei der Kautschukproduktion in der Pflanze spielen. Eine biotechnologische Produktion von Kautschuk rückt damit näher.

Der kautschukhaltige Milchsaft des Löwenzahns wird in speziellen Zellen produziert. Für die Entstehung – die Biosynthese – des Kautschuks ist dort ein Proteinkomplex verantwortlich, der auf der Oberfläche sogenannter Kautschuk-Partikel sitzt. Diese kugelförmigen Partikel sind mit Polyisopren, dem Hauptbestandteil des Kautschuks, gefüllt und von einer schützenden Hülle umgeben.

Wie die Wissenschaftler der Westfälischen Wilhelms-Universität Münster (WWU), der Außenstelle Münster des Fraunhofer-Instituts für Molekularbiologie und Angewandte Oekologie IME, der Technischen Universität München (TUM) und der TRM Ltd. aus York (England) nun am Beispiel des „Russischen Löwenzahns“, Taraxacum kok-saghyz, zeigen konnten, spielt ein spezielles Protein („rubber transferase activator“) eine Schlüsselrolle: Wird die Bildung dieses Proteins verhindert, fehlt es also in der Pflanze, entsteht kein Kautschuk.

Die Forscher gehen davon aus, dass das Protein für die Bildung des Kautschuk herstellenden Proteinkomplexes nötig ist. Ihre Ergebnisse wurden in der aktuellen Online-Ausgabe des Fachmagazins „Nature Plants“ veröffentlicht. Eine zweite Studie, die maßgeblich von IME- und WWU-Forschern durchgeführt wurde, identifiziert ein weiteres wichtiges Protein. Es hat eine zentrale Aufgabe bei der Bildung der langen Polyisopren-Ketten. Diese Polymere verleihen dem Kautschuk seine typischen Eigenschaften – seine Elastizität und Belastbarkeit.

Zwischen den Arbeitsgruppen in München und Münster besteht bereits eine langjährige Zusammenarbeit. „Zunächst haben wir durch Markierungsexperimente mit stabilen Isotopen dazu beigetragen, die Stoffwechselwege zur Latexproduktion zu erforschen,“ sagt Professor Wolfgang Eisenreich. Im Rahmen der nun publizierten Arbeiten charakterisierten die Münchener das von der Pflanze produzierte Polyisopren mit Hilfe NMR-spektroskopischer Messungen.

Effektive Kooperation zwischen Grundlagen- und anwendungsorientierter Forschung

„Das Thema Löwenzahn ist in letzter Zeit besonders durch die angewandte Forschung bekannt. Nun gibt es erfreulicherweise wieder Neuigkeiten aus der Grundlagenforschung – wir konnten gleich zwei Schlüsselkomponenten der Kautschuk-Biosynthese identifizieren“, erklärt Forschungsleiter Dr. Christian Schulze Gronover (IME, Außenstelle Münster). Bislang ist es nicht möglich, Naturkautschuk biotechnologisch herzustellen. Mit der Identifizierung von Schlüsselkomponenten der Kautschuksynthese rückt diese Option jedoch näher, so die Forscher.

Löwenzahnpflanzen, die keinen Kautschuk produzieren, könnten zudem künftig in Laborversuchen eingesetzt werden, um herauszufinden, welche Aufgabe der Kautschuk in den Pflanzen erfüllt. In der Diskussion ist beispielsweise, dass er als Schutz gegen Krankheitserreger dient.

Dirk Prüfer, Professor für Biotechnologie der Pflanzen an der WWU und Leiter der Abteilung „Funktionelle und Angewandte Genomik“ am IME in Münster, unterstreicht: „Diese Forschungsergebnisse konnten wir nur durch die effektive Zusammenarbeit zwischen Grundlagen- und anwendungsorientierter Forschung erzielen. Wir hoffen, dieses Erfolgsmodell weiter ausbauen zu können.“

Die Forschungsarbeiten wurden gefördert von der Deutschen Umweltstiftung (DBU) und dem Bundesministerium für Ernährung und Landwirtschaft (BMEL).

Publikation:

Janina Epping, Nicole van Deenen, Eva Niephaus, Anna Stolze, Julia Fricke, Claudia Huber, Wolfgang Eisenreich, Richard M. Twyman, Dirk Prüfer and Christian Schulze Gronover: A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nature Plants, Advance Online Publication, 27.04.2015; DOI: 10.1038/nplants.2015.48



More news from: Technische Universität München


Website: http://www.tum.de

Published: April 28, 2015

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section


Copyright @ 1992-2024 SeedQuest - All rights reserved