home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Solution Page

Solutions
Solutions sources
Topics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  Species
 

How Plants isolate themselves against Bacteria
Wie Pflanzen sich gegen Bakterien abschotten


Würzburg, Germany
May 26, 2015

When plants notice harmful bacteria, they respond very quickly: They close the pores on their leaves which serve as loophole for the pathogens. A Würzburg research team has analysed this process.

Plants are continuously besieged by viruses, fungi and bacteria. This is the reason why immune responses have developed in the course of evolution with which they defend themselves against many pathogenic microorganisms. An international research team has now analysed an immune response which complicates the penetration of bacteria into the leaves.

There are many very small pores in the leaves that can open wide or close completely. Through these holes in their skin, plants regulate the vital exchange of air and water with the environment. However, the pores also harbour a risk: They are welcome loopholes for pathogenic bacteria through which they can enter into the plant.

What happens in the event of a bacterial infection on the leave pores, the stomata, has so far been virtually unknown. An international research team has just published new findings about this issue in the “New Phytologist” journal. The plant scientists Rainer Hedrich and Rob Roelfsema from the University of Würzburg form the core of the team. The molecular mechanisms for controlling the stomata have been their focus for many years in their study groups.

Injecting the bacterial protein flagellin into leaves

How do stomata respond to an infestation of bacteria? This is what Aysin Guzel Deger, currently a guest PhD student at the University of Würzburg, from the University of Mersin (Turkey), wanted to find out. For this, she injected the bacterial protein flagellin into the leaves of the model plant Arabidopsis (Arabidopsis thaliana). This protein occurs in many bacteria. The plants obviously consider it dangerous and as a result respond very quickly: About 15 minutes after the injection they start to close their stomata. This is how they block the entry path of the bacteria.

The flagellin develops its effect on the guard cells which limit the stomata of the plant: Each leaf pore is lined by two cells and they ensure that the pore size can be changed. In cooperation with a team from Estonia, the Würzburg team found out exactly where the flagellin has an effect on the guard cells: “Through the OST1 enzyme it activates the ion channels SLAC1 and SLAH3. As a result the guard cells go limp and the pores close”, explains Roelfsema.

Flagellin activates the dry stress signal path

Interestingly, the enzyme and the two ion channels are also contributors when plants close their pores in the event of dryness. This way they reduce the loss of water to the environment, as Hedrich’s team already found out quite a while ago.

Dryness and bacterial pathogens therefore activate the same signal path in plants: In plant cultivation, this new finding could be used to catch two birds with one stone: “Cultivated plants with improved OST1 enzymes may at the same time be more resistant against dryness and against bacteria, says professor Hedrich. For farming, this is an exciting perspective, because dryness and pests are among the main factors that contribute to worldwide crop losses.

“Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure”, Aysin Guzel Deger, Sönke Scherzer, Maris Nuhkat, Justyna Kedzierska, Hannes Kollist, Mikael Brosché, Serpil Unyayar, Marie Boudsocq, Rainer Hedrich, and M. Rob G. Roelfsema. New Phytologist, published online on 30 April 2015, DOI: 10.1111/nph.13435


Wie Pflanzen sich gegen Bakterien abschotten

Wenn Pflanzen schädliche Bakterien bemerken, reagieren sie darauf sehr schnell: Sie verschließen an ihren Blättern die Poren, die den Erregern als Schlupflöcher dienen. Eine Würzburger Forschungsgruppe hat diesen Vorgang analysiert.

Pflanzen werden ständig von Viren, Pilzen und Bakterien bedrängt. Darum haben sie im Lauf der Evolution Immunantworten entwickelt, mit denen sie sich gegen viele krankheitserregende Mikroorganismen wehren. Ein internationales Forschungsteam hat jetzt eine Immunantwort analysiert, die Bakterien das Eindringen in die Blätter erschwert.

In den Blättern befinden sich sehr viele kleine Poren, die sich weit öffnen oder komplett verschließen lassen. Über diese Löcher in ihrer Haut regulieren die Pflanzen den lebensnotwendigen Austausch von Luft und Wasser mit der Umgebung. Die Poren bergen aber auch ein Risiko: Für krankheitserregende Bakterien sind sie willkommene Schlupflöcher, um in die Pflanzen einzudringen.

Was bei einer bakteriellen Infektion an den Blattporen, den Stomata, passiert, war bislang so gut wie unbekannt. Ein internationales Forschungsteam hat dazu jetzt neue Erkenntnisse in der Zeitschrift „New Phytologist“ veröffentlicht. Den Kern des Teams bilden die Pflanzenwissenschaftler Rainer Hedrich und Rob Roelfsema von der Universität Würzburg. In ihren Arbeitsgruppen sind die molekularen Mechanismen zur Kontrolle der Stomata seit vielen Jahren ein Schwerpunkt.

Bakterienprotein Flagellin in Blätter injiziert

Wie reagieren die Stomata auf einen Befall mit Bakterien? Das wollte Aysin Guzel Deger von der Universität Mersin (Türkei) herausfinden, die derzeit als Gastdoktorandin in Würzburg ist. Dazu injizierte sie das Bakterienprotein Flagellin in die Blätter der Modellpflanze Ackerschmalwand (Arabidopsis thaliana). Dieses Protein kommt bei sehr vielen Bakterien vor. Die Pflanzen stufen es offensichtlich als Gefahr ein und reagieren dann sehr schnell: Sie beginnen etwa 15 Minuten nach der Injektion, ihre Stomata zu verschließen. So versperren sie den Eintrittsweg für die Bakterien.

Das Flagellin entfaltet seine Wirkung an den Schließzellen, die die Stomata der Pflanze begrenzen: Je zwei davon säumen jede Blattpore und sorgen dafür, dass sich die Porengröße verändern lässt. In Kooperation mit einem Team aus Estland fanden die Würzburger heraus, wo genau an den Schließzellen das Flagellin wirkt: „Es aktiviert dort über das Enzym OST1 die Ionenkanäle SLAC1 und SLAH3. Als Folge davon erschlaffen die Schließzellen und die Poren gehen zu“, erklärt Roelfsema.

Flagellin aktiviert den Trockenstress-Signalweg

Interessanterweise sind das Enzym und die zwei Ionenkanäle auch daran beteiligt, wenn Pflanzen ihre Poren bei Trockenheit dichtmachen. Auf diesem Weg verringern sie den Verlust von Wasser an die Umgebung, wie Hedrichs Team schon vor längerer Zeit herausgefunden hat.

Trockenheit und bakterielle Krankheitserreger aktivieren in Pflanzen also denselben Signalweg: Diese neue Erkenntnis könnte sich in der Pflanzenzüchtung dazu nutzen lassen, um zwei Fliegen mit einer Klappe zu schlagen: „Kulturpflanzen mit verbesserten OST1-Enzymen könnten vielleicht gleichzeitig widerstandsfähiger gegen Trockenheit und gegen Bakterien sein“, sagt Professor Hedrich. Für die Landwirtschaft sei das eine spannende Perspektive, denn Trockenheit und Schädlinge gehören zu den Hauptfaktoren, die weltweit für Ernteeinbußen sorgen.

“Guard cell SLAC1-type anion channels mediate flagellin-induced stomatal closure”, Aysin Guzel Deger, Sönke Scherzer, Maris Nuhkat, Justyna Kedzierska, Hannes Kollist, Mikael Brosché, Serpil Unyayar, Marie Boudsocq, Rainer Hedrich, and M. Rob G. Roelfsema. New Phytologist, online publiziert am 30. April 2015, DOI: 10.1111/nph.13435



More solutions from: University of Würzburg


Website: http://www.uni-wuerzburg.de

Published: May 31, 2015

 

 

 

 

 

 

 

 

 

 


Copyright @ 1992-2024 SeedQuest - All rights reserved