home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Anthropogenic seed dispersal: rethinking the origins of plant domestication
Saatgutverteilung durch den Menschen: Neue Überlegungen zum Ursprung der Pflanzendomestikation


Germany
February 27, 2020

In a new manuscript, Dr. Robert Spengler argues that all of the earliest traits of plant domestication are linked to a mutualistic relationship in which plants recruited humans for seed dispersal




A photo of an ear from a wild barley plant, with the ripe seeds naturally shattering off due to the brittle rachis or stem structure at their base. In the wild, this brittle rachis allows the plant to spread its seed up to two meters from the parent plant, which is a rather weak dispersal mechanism and not characteristic of the other crop progenitor plants. The barley that we eat today evolved tougher rachises as part of the mutualistic relationship they evolved with humans. Humans have dispersed barley plants all over the world. - Credit: Robert Spengler
 

The plants we consume for food have changed drastically in the 10,000 years since humans began practicing agriculture, but hominids have been intensively interacting with the plants and animals around them since before the dawn of our species. As humans became aware of the ability to modify crops through selective breeding, the evolution of new traits in plants greatly increased. However, plants have been evolving in response to human selective pressures since long before people began consciously altering them through breeding.

In a new study published in Trends in Plant Science, Dr. Robert Spengler examines these evolutionary responses and theorizes that all of the earliest traits to evolve in the wild relatives of modern domesticated crops are linked to human seed dispersal and the evolutionary need for a plant to spread its offspring.

Domestication syndrome and the emergence of similar traits

Many of the earliest traits of domestication in plants are similar across different crop species, a phenomenon evolutionary biologists refer to as parallel evolution. For example, in all large-seeded grass crops - e.g. wheat, barley, rice, oats - the first trait of domestication is a toughening of the rachis (the individual stem that holds a cereal grain to the ear). Likewise, in all large-seeded legumes, such as peas, lentils, fava beans, and kidney beans, the earliest trait of domestication is a non-shattering pod.

Archaeobotanists studying early plant domestication agree that the evolution of tougher rachises in cereal crops was a result of humans using sickles to harvest grains. During a harvest, the specimens with the most brittle rachises lost their seeds, whereas the plants with tougher rachises benefited from having their seeds protected and saved for the following year. Humans then cleared away competitive plants (weeding), tilled soil, sowed seeds, and maintained the crops until the next harvest. We can assume that the same process occurred for legumes.

For nearly a century, scholars have been aware of the fact that this parallel evolution was the result of similar selective pressures from people in different centers of domestication around the world, leading to what many researchers call "domestication syndrome." In the simplest biological sense, Spengler suggests, humans provide better seed-dispersal services for food crops than those plants would have had in the wild, causing them to evolve traits that facilitated agriculture and improved their own chances of reproduction.

The Evolution of Seed-Dispersal Traits in Crops

Archaeobotanists have studied seed-dispersal traits in the wild relatives of cereal and legume crops, but few have discussed how the wild relatives of other crops dispersed their seeds. In this manuscript, Spengler steps away from the heavy focus on these few plants and looks at the wild seed-dispersal processes in other crops.

Spengler notes that before the last Ice Age, megafaunal mammals, including humans, were key for the evolution of larger fruits in the wild. While some plants have mechanical methods of seed dispersal, the most common way plants spread their seeds is by recruiting animals to do it for them. Bright red cherries, for example, have evolved to entice birds with red-green color vision. The birds consume the sugary fruit, then fly to a new area and deposit the seed from the cherry. Larger fruits, however, require larger animals to distribute them, meaning the progenitor plants for most of the fruits in our produce markets today evolved to be spread by large mammals. Paleontologists have previously noted the parallel evolution of larger fruits to entice larger animals in many unrelated plant families, a process that Spengler reveals to be mirrored in the evolution of crops cultivated by humans.

Spengler also theorizes that megafaunal mammals may have been key to the dispersal of seeds in the progenitors of small-seeded grains, such as quinoa, millets, and buckwheat. With smooth, hard-shelled seeds that grow at the top of the plant, no secondary defensive compounds or thorns, and a rapid rate of growth, the foliage of these plants are the perfect food for grazing animals. The small size of these wild seeds may have been an evolutionary adaptation that allowed them to pass successfully through the digestive systems of hooved mammals, which often only allow seeds smaller than 2mm to pass. Conceptualizing domestication as seed-dispersal based evolution, as Spengler proposes, explains why the first traits of domestication in all of the small-seeded annual crops were thinning of the seed coat, an increase in seed size, and breaking of dormancy - a reversal of the traits that allowed for seed dispersal by grazing mammals. The domestication process severed the mutualistic ties these plants had with their wild seed dispersers and made them dependent upon humans for dispersal.

Understanding Plant Domestication as Seed-Dispersal-Based Mutualism

During the Early and Mid-Holocene, plants in specific locations around the world started to evolve new traits in response to human cultivation practices. As human populations increased in size and became more concentrated, the selective pressures that people placed on these plants increased. In the wild, plants often evolve mutualistic relationships in response to heavy herbivory pressures. The same evolutionary responses, Spengler argues, can be seen in farmers' fields during the early steps towards domestication, with plants developing traits to better use humans as seed dispersers.

"Humans are the best seed dispersers that have ever existed, dispersing plant species all over the world," Spengler says. "We are currently removing all competitive plant species across the Amazon to spread soybean seeds - a plant that originally evolved traits for a mutualistic relationship with humans in East Asia. Likewise, most of the prairies of the American Midwest have been removed in order to grow maize, a crop that evolved to recruit humans in tropical southern Mexico. Humans are powerful seed dispersers and plants will readily evolve new traits to spread their seeds and colonize new areas more successfully."

Dr. Spengler is the director of the archaeobotanical laboratories at the Max Planck Institute for the Science of Human History in Jena, Germany. "It is important look at the domestication of plants from an evolutionary ecology perspective and seek to find parallels between the evolution of plants in the wild and during early cultivation," says Spengler. "By modeling domestication as an equivalent process to evolution in the wild and setting aside the idea of conscious human innovation, we can more effectively study the questions of why and how this process occurred."


Saatgutverteilung durch den Menschen: Neue Überlegungen zum Ursprung der Pflanzendomestikation

In einem neuen Manuskript argumentiert Dr. Robert Spengler, dass die frühesten Merkmale der Pflanzendomestikation alle mit einer mutualistischen Beziehung verbunden sind, in der die Pflanzen den Menschen zur Verbreitung ihrer Samen rekrutieren.

In den letzten 3000 Jahren hat die selektive Züchtung die Palette der Eigenschaften domestizierter Pflanzen entscheidend erweitert. Ein genauer Blick auf die archäobotanischen Befunde zeigt jedoch, dass bereits bevor der Mensch mit der gezielten Züchtung von Nutzpflanzen begann, eine Reihe einander ähnlicher Merkmale bei den später domestizierten Pflanzen auftrat. In einer aktuellen Studie gibt Robert Spengler, Leiter der archäobotanischen Labore am Max-Planck-Institut für Menschheitsgeschichte in Jena einen Überblick über die frühen evolutionären Anpassungen bei Pflanzen und argumentiert, dass diese eine Reaktion auf die Unterstützung des Menschen bei der Verbreitung des Saatguts darstellen.

Als sich der Mensch der Fähigkeit bewusst wurde, Nutzpflanzen durch selektive Züchtung zu verändern, stieg die Entwicklung neuer Eigenschaften bei diesen Pflanzen stark an und seit die Menschen vor rund 10000 Jahren damit begonnen haben Landwirtschaft zu betreiben, haben sich unsere Nutzpflanzen drastisch verändert. Hominide haben jedoch schon vor dem Aufkommen des Homo sapiens intensiv mit den Pflanzen und Tieren in ihrem Lebensraum interagiert und lange bevor der Mensch begann, sie bewusst durch Züchtung zu verändern, haben Pflanzen auf den selektiven Druck des Menschen reagiert und neue Merkmale entwickelt.

In einer neuen Studie, die am 27. Februar in der Zeitschrift Trends in Plant Science erscheint, untersucht Dr. Robert Spengler diese evolutionären Reaktionen und argumentiert, dass alle frühesten Merkmale, die sich bei den wilden Vorfahren der heutigen Nutzpflanzen entwickelten, in Verbindung stehen mit dem Bedürfnis der Pflanzen ihr Saatgut zu verbreiten und der Unterstützung des Menschen dabei.

 Das Domestizierungssyndrom

Viele der frühesten Merkmale der Domestikation bei Pflanzen sind bei unterschiedlichen Kulturpflanzenarten ähnlich, ein Phänomen, das in der Evolutionsbiologie als parallele Evolution bezeichnet wird. So ist zum Beispiel bei großsamigem Getreide, wie Weizen, Gerste, Reis oder Hafer, das erste Domestikationsmerkmal eine Zähigkeit der Ährenachsenglieder (einzelne Stängel, die die Getreidekörner an der Ähre hält). Und bei allen großkörnigen Hülsenfrüchten, wie Erbsen, Linsen, Favabohnen und Kidneybohnen, ist das früheste Merkmal der Domestikation eine weniger brüchige Schote.

In der Archäobotanik besteht Einigkeit darüber, dass die Entwicklung härterer Ährenachsenglieder bei Getreidekulturen darauf zurückzuführen ist, dass der Mensch sie mit Sicheln erntete. Dabei verloren die Exemplare mit den brüchigsten Ährenachsengliedern ihr Saatgut bereits während der Ernte, während die Pflanzen mit härteren Gliedern davon profitierten, dass ihr Saatgut geschützt und für das folgende Jahr aufbewahrt wurde. Die Menschen beseitigten dann konkurrenzfähige Pflanzen („Unkraut“), bestellten den Boden, säten die Samen aus und pflegten die Pflanzen bis zur nächsten Ernte. Wir können davon ausgehen, dass der gleiche Prozess auch bei den Hülsenfrüchten (Leguminosen) stattfand.

Seit fast einem Jahrhundert ist sich die Forschung der Tatsache bewusst, dass diese parallele Entwicklung das Ergebnis eines ähnlichen Selektionsdrucks von Menschen in verschiedenen Domestikationszentren auf der ganzen Welt war, was zu dem führte, was viele Forschende als "Domestikationssyndrom" bezeichnen. Im einfachsten biologischen Sinne, so Spengler, erhöht der Mensch, im Gegensatz zur Natur, die Chance auf die Verbreitung bestimmten Saatguts einer Nutzpflanze. Dadurch entwickeln diese Pflanzen  Eigenschaften, welche die Landwirtschaft erleichtern und ihre eigenen Reproduktionschancen verbessern.

Die Entwicklung der Streuungseigenschaften des Saatguts bei Kulturpflanzen

In der Archäobotanik wurden die Samenverbreitungsmerkmale bei den wilden Verwandten von Getreide und Hülsenfrüchten untersucht, aber die Frage, wie die wilden Verwandten anderer Kulturpflanzen ihr Saatgut verbreiten, fand bislang nur wenig Beachtung. In seiner neuen Studie überwindet Spengler die starke Konzentration auf diese wenigen Pflanzen und betrachtet auch die Prozesse der Samenausbreitung bei den wilden Vorfahren anderer Kulturpflanzen.

Spengler stellt fest, dass vor der letzten Eiszeit großwüchsige Säugetiere, darunter der Mensch, der Schlüssel für die Entwicklung größerer Früchte in der freien Natur waren. Während einige Pflanzen über mechanische Methoden der Samenausbreitung verfügen, verbreiten Pflanzen ihre Samen am häufigsten durch die Rekrutierung von Tieren. Zum Beispiel haben sich leuchtend rote Kirschen entwickelt, um Vögel mit rot-grünem Farbsehvermögen anzulocken. Die Vögel verzehren die zuckerhaltigen Früchte, fliegen weiter und setzen den Samen der Kirsche in neuen Regionen ab. Größere Früchte können jedoch nur durch größere Tiere verzehrt werden. Das heißt, die Vorläuferpflanzen der meisten Früchte auf unseren heutigen Märkten wurden durch große Säugetiere verbreitet. In der Paläontologie wurde bereits früher die parallele Entwicklung größerer Früchte in vielen nicht miteinander verwandten Pflanzenfamilien bemerkt, mit denen die Pflanzen größere Tiere anlocken konnten. Ein Prozess, der sich laut Spengler in der Entwicklung der vom Menschen angebauten Pflanzen widerspiegelt.

 

original

Die wilden Vorfahren der domestizierten Hülsenfrüchte, wie diese wilde Verwandte der Graserbsen (Lathyrus), explodieren und schießen ihre Samen aus, wenn sie reif sind. Die ersten Schritte zur Domestikation beinhalteten den Verlust dieser Eigenschaft zugunsten der Beibehaltung der Samen in ihren Hülsen, damit der Mensch sie sammeln kann. Der Mensch wurde dann zum obligatorischen Verbreiter für diese domestizierten Hülsenfrüchte. - © Robert Spengler
 

Spengler stellt zudem die Theorie auf, dass große Säugetiere der Schlüssel zur Verbreitung von Samen bei den Vorläufern von kleinsamigem Getreide wie Quinoa, Hirse und Buchweizen gewesen sein könnten. Mit glatten, hartschaligen Samen, die an der Spitze der Pflanze wachsen, ohne sekundäre Abwehrstoffe oder Dornen und mit einer schnellen Wachstumsrate sind die Blätter dieser Pflanzen die perfekte Nahrung für Weidetiere. Die geringe Größe dieser Wildsamen könnte eine evolutionäre Anpassung gewesen sein, die es den Samen erlaubte, erfolgreich durch die Verdauungssysteme von Huftieren zu gelangen, welche oft nur Samen von weniger als zwei Millimetern Größe passieren lassen. Wenn man Domestikation, wie Spengler vorschlägt, als eine durch die Optimierung der Samenausbreitung getriebene Evolution versteht, erklärt das, warum die ersten Merkmale der Domestikation bei allen einjährigen Kleinsamenkulturen eine Verdünnung der Samenschale, eine Zunahme der Samengröße und das Aufbrechen der Ruhephase waren - eine Umkehrung der Merkmale, welche die Samenausbreitung durch weidende Säugetiere ermöglichte. Der Domestizierungsprozess löste die wechselseitigen Bindungen, die diese Pflanzen mit ihren tierischen Samenverbreitern hatten, und machte sie von der Verbreitung vom Menschen abhängig.

Pflanzendomestikation als auf Saatgutdispersion basierende Gegenseitigkeit verstehen

Während des Früh- und Mittelholozäns begannen Pflanzen an bestimmten Standorten auf der ganzen Welt als Reaktion auf menschliche Anbaupraktiken neue Merkmale zu entwickeln. Als die menschlichen Populationen wuchsen und dichter beieinander siedelten, nahm der selektive Druck der Menschen auf diese Pflanzen zu. In der freien Natur entwickeln Pflanzen als Reaktion auf den starken Druck der Pflanzenfresser oft mutualistische Beziehungen. Dieselben evolutionären Reaktionen, so Spengler, sind auf den Feldern der Bauern während der frühen Schritte zur Domestikation zu beobachten, wobei die Pflanzen Eigenschaften entwickeln, die ihre Verbreitung durch den Menschen optimieren.
 

original

Ein Landwirt in Usbekistan brennt die Stoppeln auf seinem Feld ab, um das Unkraut und die Insekten zu reduzieren, bevor eine neue Fruchtfolge gepflanzt wird. Das Saatgut, das die Bauern für das nächste Jahr aufheben, hat eine hohe Überlebenschance, während Samen, die von der Pflanze fallen gelassen werden, von Vögeln oder Insekten verzehrt oder durch Winterfröste getötet werden können. Deshalb haben die Pflanzen Möglichkeiten entwickelt, ihr Saatgut zu behalten, damit es vom Menschen gesammelt und nicht auf dem Boden verteilt wird. - © Robert Spengler
 

"Der Mensch ist der erfolgreichste Verbreiter von Samen, den es je gegeben hat. Einige Pflanzenarten hat er über die ganze Welt verteilt", sagt Spengler. "Wir sind dabei, im gesamten Amazonasgebiet alle konkurrierenden Pflanzenarten zu entfernen, um die Samen der Sojabohne zu verbreiten - eine Pflanze, die ursprünglich Merkmale einer mutualistischen Beziehung mit den Menschen in Ostasien entwickelt hat. Ebenso wurden die meisten Prärien des amerikanischen Mittelwestens beseitigt, um Mais anzubauen, eine Pflanze, die der Mensch im tropischen Süden Mexikos domestiziert hat. Der Mensch ist ein hoch effektiver „Samenverbreiter“, und auch die Pflanzen sind bereit neue Eigenschaften zu entwickeln, um ihre Samen zu verbreiten und neue Gebiete erfolgreich zu besiedeln".

"Es ist wichtig“, erklärt Spengler abschließend, „die Domestikation von Pflanzen aus der Perspektive der Evolutionsökologie zu betrachten und nach Parallelen zwischen der Evolution von Pflanzen unter natürlichen Bedingungen und während der frühen Kultivierung zu suchen. Indem wir die Domestikation als einen der Evolution in der Wildnis gleichwertigen Prozess modellieren und die Idee einer bewussten menschlichen Innovation beiseitelassen, können wir die Fragen, warum und wie dieser Prozess stattgefunden hat, effektiver untersuchen.“



More news from: Max Planck Gesellschaft


Website: http://www.mpg.de

Published: February 27, 2020

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section

 


Copyright @ 1992-2024 SeedQuest - All rights reserved