home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Multi-nutrient rice against malnutrition - ETH researchers develop rice variety that has increased levels of iron and zinc and produces beta-carotene
Versteckten Hunger bekämpfen - ETH-Forschende haben eine Reissorte entwickelt, die in den Körnern Eisen und Zink anreichert sowie Beta-Karotin erzeugt


Zurich, Switzerland
August 8, 2017

ETH researchers have developed a new rice variety that not only has increased levels of the micronutrients iron and zinc in the grains, but also produces beta-carotene as a precursor of vitamin A. This could help to reduce micronutrient malnutrition, or «hidden hunger», which is widespread in developing countries.

The new rice line in the greenhouse can supply rice consumers with three essential micronutrients in the future. (Image: ETH Zurich / courtesy of Navreet Bhullar)

Nearly every second person eats primarily rice to meet the daily calorie needs. A meal of rice stops the hunger, but contains only very few or none of the essential micronutrients. As a consequence, large segments of the human population are malnourished, especially in Asia and Africa. They do not obtain enough iron, zinc and also vitamin A to stay healthy. Insufficient iron intake results in anemia, retards brain development and increases mortality among women and infants. If children are deficient for vitamin A, they can turn blind and their immune system is weakened, often causing infectious diseases such as measles, diarrhea or malaria.

Golden Rice against vitamin A deficiency

To combat malnutrition, ETH researchers led by Ingo Potrykus developed a new rice variety already many years ago that in 2000 became known as «Golden Rice». This was one of the first genetically modified rice varieties in which the researchers could produce beta-carotene, the precursor of vitamin A, in the endosperm of the rice grain. Golden Rice was later improved and is now used in breeding programs in several countries, primarily in Southeast-Asia. To address other micronutrient deficiencies, researchers in the Laboratory of Plant Biotechnology of Professor Gruissem at ETH Zurich and in other countries also developed rice varieties with increased iron levels in the rice and wheat grains, for example.

All of the new transgenic rice varieties have one thing in common, however: they can only provide one particular micronutrient. Until to date, combining several micronutrients into one rice plant was a dream that had not been realized.

First multi-nutrient rice

Now a group led by Navreet Bhullar, senior scientist in the Laboratory of Plant Biotechnology at ETH Zurich, report a success in creating a multi-nutrient rice. The results were recently published in the journal Scientific Reports.

The researcher and her PhD student Simrat Pal Singh succeeded in genetically modifying rice plants such that in addition to sufficient levels of iron and zinc, they also produce significant levels of beta-carotene in the endosperm of the grain compared to normal varieties. «Our results demonstrate that it is possible to combine several essential micronutrients - iron, zinc and beta-carotene - in a single rice plant for healthy nutrition», explains Bhullar.

Scientifically, the success was the engineering of a gene cassette containing four genes for the micronutrient improvement that could be inserted into the rice genome as a single genetic locus. This has the advantage that iron, zinc and beta-carotene levels can be simultaneously increased by genetic crosses in rice varieties of various countries. Otherwise it would be necessary to cross rice lines with the individual micronutrients to reach the improved micronutrient content in rice grains.

Bhullar and her PhD students worked several years to establish this proof-of concept. Although the grains of the multi-nutrient rice lines have more beta-carotene than the original japonica rice variety, depending on the lines the beta-carotene content can be ten-fold lower than in Golden Rice 2, the improved variant of Golden Rice. «But if one would substitute 70 percent of the currently consumed white rice with the multi-nutrient variety, this could markedly improve vitamin A supplementation already in addition to sufficient iron and zinc in the diet», emphasizes the researcher.

Multi-nutrient rice variety tested in the greenhouse

The new multi-nutrient rice lines are still in their testing phase. Until now the plants have been grown in the greenhouse and analyzed for their micronutrient content. «We will improve the lines further», says Bhullar. It is planned to test the plants in confined field trials to determine if the micronutrient traits and also agronomic properties are equally robust in the field as they are in the greenhouse.

Bhullar hopes that the new rice lines will be tested in the field next year. But she does not know yet when they are ready for production in farmer’s fields. «It will probably be five years before the multi-nutrient rice can be used to reduce hidden hunger», she says.

Reference

Singh SP, Gruissem W, Bhullar NK. Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Scientific Reports, published online 31 July 2017. DOI:10.1038/s41598-017-07198-5


Versteckten Hunger bekämpfen - ETH-Forschende haben eine Reissorte entwickelt, die in den Körnern Eisen und Zink anreichert sowie Beta-Karotin erzeugt

ETH-Forschende haben eine neue Reissorte entwickelt, die in ihren Körnern nicht nur die Spurenelemente Eisen und Zink anreichert, sondern gleichzeitig auch Beta-Karotin als Vorstufe von Vitamin A erzeugt. Damit liesse sich der «versteckte Hunger» in Entwicklungsländern wirkungsvoll eindämmen.

Die neue Reislinie im Gewächshaus kann in Zukunft Reiskonsumenten mit drei lebenswichtigen Spurenelementen und Nährstoffen versorgen. (Bild: ETH Zürich / zVg Navreet Bhullar)

Nahezu jeder zweite Mensch deckt seinen täglichen Kalorienbedarf hauptsächlich mit Reis. Dieser macht zwar satt, enthält aber nur wenige oder keine lebenswichtigen Spurenelemente. Insbesondere in weiten Teilen Asiens und Afrikas leiden Menschen an Mangelernährung, weil sie über die tägliche Nahrung zu wenig Zink, Eisen oder auch Vitamin A aufnehmen, um gesund zu bleiben. Eisenmangel führt etwa zu Blutarmut, verzögerter Hirnreifung und erhöhter Mütter- und Säuglingssterblichkeit. Mangelt es Kindern an Vitamin A, können sie erblinden, und ihr Immunsystem ist geschwächt. Sie erleiden deshalb häufiger Infektionskrankheiten wie Masern, Durchfall oder Malaria.

Golden Rice gegen Vitamin-A-Mangel

Um dieses Übel an der Wurzel zu packen, entwickelten ETH-Forschende unter Leitung von Ingo Potrykus schon vor Jahren eine neue Reislinie, die um das Jahr 2000 als «Golden Rice» bekannt wurde. Diese Linie war eine der ersten gentechnisch veränderten Reissorten, in der Wissenschaftler die Produktion von Beta-Karotin, also der Vorstufe von Vitamin A, im weissen Teil des Reiskorns realisieren konnten. Golden Rice wurde später verbessert und wird mittlerweile in den Züchtungsprogrammen mehrerer Länder eingesetzt, hauptsächlich in Südostasien.  Um weitere Mangelerkrankungen zu bekämpfen, entwickelten Forscher im Labor für Pflanzenbiotechnologie von Professor Wilhelm Gruissem an der ETH Zürich und in anderen Ländern in der Folge auch Reis- und Weizenlinien, die beispielsweise Eisen im Korn anreicherten.

Alle diese neu geschaffenen Reislinien haben aber etwas gemeinsam: Sie können nur ein mangelndes Spurenelement abdecken. Die Idee, mehrere Spurenelemente in einer Reispflanze zu kombinieren und quasi ein Multivitamin- und Mehrfachnährstoffreis herzustellen, konnte bislang nicht realisiert werden.

Erster Multifunktions-Reis

Nun ist aber einer Gruppe um Navreet Bhullar, Oberassistentin im Labor für Pflanzenbiotechnologie an der ETH Zürich, diesbezüglich ein Durchbruch gelungen. Die entsprechende Studie ist vor Kurzem in der Zeitschrift Scientific Reports erschienen.

Die Forscherin und ihr Doktorand Simrat Pal Singh haben es geschafft, Reispflanzen gentechnisch so zu modifizieren, dass deren polierte Körner neben ausreichenden Mengen an Eisen und Zink auch bedeutend mehr Beta-Karotin im weissen Teil des Korns enthalten als die nicht modifizierte Ausgangssorte. «Unsere Resultate zeigen, dass es möglich ist, in einer einzigen Reispflanze mehrere wichtige Mikronährstoffe für eine gesunde Ernährung – Eisen, Zink und Beta-Karotin – zu kombinieren», erklärt Bhullar.

Der Erfolg aus Sicht der Wissenschaft ist, dass die vier verwendeten Gene für die Anreicherung der Mikronährstoffe als sogenannte Genkassette an einem einzigen Ort (Locus) in das Reiserbgut eingesetzt werden konnten.  Dies hat den Vorteil, dass der Gehalt von Eisen, Zink und Beta-Karotin gleichzeitig durch Kreuzungen in Reissorten verschiedener Länder erhöht werden kann. Ansonsten wäre es notwendig, transgene Reislinien für jeweils einzelne Mikronährstoffe miteinander zu kreuzen, um diese im Reiskorn wie gewünscht erhöhen zu können.

An diesem Prinzipiennachweis hat Bhullar und ihre Doktoranden mehrere Jahre geforscht. Die Körner der veränderten Reislinie enthalten nun zwar mehr Beta-Karotin als die unveränderte Ausgangssorte (japonica-Varietät), aber je nach Linie bis zu zehnmal weniger als Golden Rice 2, die verbesserte Variante des Golden Rice. «Würde man aber 70 Prozent des derzeit verzehrten weissen Reises durch unsere Multinährstoff-Linie ersetzen, könnte zusätzlich zur verbesserten Versorgung mit Eisen und Zink jetzt auch schon die Vitamin-A-Versorgung markant verbessert werden», betont die Forscherin.

Im Gewächshaus erprobt

Noch befinden sich die neuen Multinährstoff-Reislinien im Teststadium. Die Pflanzen wurden bisher erst im Gewächshaus angepflanzt und auf ihren Nährstoffgehalt untersucht. «Wir werden die Linien weiterentwickeln», sagt Bhullar. Es ist geplant, ausgewählte Linien dann unter kontrollierten Bedingungen im Freiland zu testen, um herauszufinden, ob die gewünschten und auch die agronomischen Eigenschaften erhalten bleiben und genauso gut funktionieren wie im Gewächshaus.

Bhullar hofft, dass die neuen Reislinien im nächsten Jahr im Feld getestet werden können.  Aber sie kann nicht sagen, wann sie frühestens von Landwirten angebaut werden könnten. «Es werden sicher noch fünf Jahre vergehen, ehe der Multinährstoff-Reis zur Eindämmung des ’versteckten Hungers’ eingesetzt werden kann», sagt sie.

Literaturhinweis

Singh SP, Gruissem W, Bhullar NK. Single genetic locus improvement of iron, zinc and β-carotene content in rice grains. Scientific Reports, published online 31 July 2017. DOI:10.1038/s41598-017-07198-5



More news from: ETH Zurich (Swiss Federal Institute of Technology Zürich)


Website: http://www.ethz.ch

Published: August 9, 2017

The news item on this page is copyright by the organization where it originated
Fair use notice


Copyright @ 1992-2024 SeedQuest - All rights reserved