home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Turning pollen into a low-cost fertilizer


USA
August 16, 2017

http://web.1.c2.audiovideoweb.com/1c2web3536/PP081617lettuce.jpg
Lettuce grows larger when fertilized with pollen-derived carbon dots

"Bioimaging Application and Growth-Promoting Behavior of Carbon Dots from Pollen on Hydroponically Cultivated Rome Lettuce"
ACS Omega

As the world population continues to balloon, agricultural experts puzzle over how farms will produce enough food to keep up with demand. One tactic involves boosting crop yields. Toward that end, scientists have developed a method to make a low-cost, biocompatible fertilizer with carbon dots derived from rapeseed pollen. The study, appearing in ACS Omega, found that applying the carbon dots to hydroponically cultivated lettuce promoted its growth by 50 percent.

Equipped with exceptional mechanical, thermal, optical and electrical properties, carbon nanomaterials are commonly associated with complex devices. Surprisingly, these materials could also have potential agricultural applications — some studies have shown that they increase plant growth. The problem with this concept, however, is that many carbon nanomaterials are expensive to produce and usually come with heavy metal contamination. For a safer alternative, Yingliang Liu, Bingfu Lei and colleagues turned to carbon dots, which previous studies have shown are biocompatible.

The researchers synthesized carbon dots by breaking apart and heating rapeseed pollen. The high-yield process was relatively inexpensive, costing 3 cents per gram. Testing the material as fertilizer on lettuce showed that at a concentration of 30 milligrams per liter of a nutrient solution, the plant biomass was nearly 50 percent greater in treated plants than those that didn’t receive the carbon dots. Additionally, because carbon dots are fluorescent, the researchers could track the materials under ultraviolet light. They saw that the materials were distributed mainly in the leaves. Further analysis also demonstrated that the levels of vitamin C, and soluble sugars and proteins weren’t affected.

The authors acknowledge funding from the National Natural Science Foundation, the Science and Technology Planning Project of Guangdong Province, the Guangzhou Science & Technology Project, the Guangdong Natural Science Foundation and the Foundation for High-Level Talents in Higher Education of Guangdong Province.



More news from: American Chemical Society


Website: http://www.acs.org

Published: August 18, 2017

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section


Copyright @ 1992-2024 SeedQuest - All rights reserved