home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
News Page

The news
and
beyond the news
Index of news sources
All Africa Asia/Pacific Europe Latin America Middle East North America
  Topics
  Species
Archives
News archive 1997-2008
 

Battling bubbles: how plants protect themselves from killer fungus - University of California Riverside researchers show how plants fight against infections by delivering protective molecules into fungi using bubble-like exosomes


Riverside, California, USA
May 17, 2018
 

a photo of a strawberry affected by gray mold.
Botrytis cinerea is a costly gray mold that affects many fruits, vegetables and flowers
 

In the battle between plants and pathogens, molecules called small RNAs are coveted weapons used by both invaders and defenders.

In a paper published Thursday (May 17) in the journal Science, researchers at the University of California, Riverside report how plants package and deliver the small RNAs, or sRNAs, they use to fight back against plant pathogens. The study focused on Botrytis cinerea, a fungus that causes a grey mold disease in almost all fruits, vegetables, and many flowers.

Hailing Jin, a professor of microbiology and plant pathology in UCR’s College of Natural and Agricultural Sciences, has been studying the role of sRNAs in plant immunity and disease. Her goal is to develop effective and environmentally friendly strategies to control plant diseases and to secure food production.

During a phenomenon called cross-kingdom RNA interference, some pathogens and plants exchange sRNAs during their interactions with each other. Small RNAs are molecules that regulate biological processes by interfering with gene expression. While pathogens deliver sRNAs into plant cells to suppress host immunity, plants transfer sRNAs into pathogens to inhibit their ability to cause infection. Until now, it remained unknown how small RNAs move across the cellular boundaries between hosts and pathogens.
 

 

Hailing Jin, a professor of microbiology and plant pathology, holds the Cy Mouradick Endowed Chair at UCR.

 

Jin’s team found that during infection with Botrytis cinerea, plant cells package sRNAs inside bubble-like sacs, called exosomes, which are sent out of the plant cells and accumulate near the site of infection. These ‘battling bubbles’ are taken up by the fungal cells efficiently, where the transferred host sRNAs inhibit the expression of fungal genes needed to cause the disease. The research was performed using Arabidopsis thaliana, a small flowering plant widely used as a model species because it is easy to grow and study.

“The discovery of the role of exosomes in cross-kingdom RNA interference will help us develop effective delivery methods to target plant pathogens with artificial sRNAs, with the goal of controlling plant diseases in crops, said Jin, who holds the Cy Mouradick Endowed Chair at UCR and is a member of the university’s Institute for Integrative Genome Biology.

Jin said her group is also characterizing the pathogen targets of the protective sRNAs transferred from the plant to help identify new genes involved in pathogen virulence.

The paper is titled “Plants secrete extracellular vesicles to deliver small RNAs into a fungal pathogen to silence its virulence genes.” In addition to Jin, contributors from UCR include Qiang Cai, a postdoctoral researcher in Jin’s group and first author on the paper; Lulu Qiao; Ming Wang; Baoye He; and Jared Palmquist. Feng-Mao Lin and Bryan Hsien-Da Huang from National Chiao Tung University in Taiwan also contributed.

This work is funded by the National Institutes of Health and National Science Foundation.



More news from: University of California, Riverside


Website: http://www.ucr.edu

Published: May 17, 2018

The news item on this page is copyright by the organization where it originated
Fair use notice

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Archive of the news section


Copyright @ 1992-2024 SeedQuest - All rights reserved