home news forum careers events suppliers solutions markets expos directories catalogs resources advertise contacts
 
Solution Page

Solutions
Solutions sources
Topics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
  Species
 

New sequencing reveals genetic history of tomatoes


Davis, California, USA
October 14, 2014

Source
By Roger Chetelat

This week, an international team of researchers, led by the Chinese Academy of Agricultural Sciences in Beijing, is publishing in the journal Nature Genetics a brief genomic history of tomato breeding, based on sequencing of 360 varieties of the tomato plant.

The C.M. Rick Tomato Genetics Resource Center here at UC Davis played an important role in this study by providing seed of both cultivated tomato varieties and related wild species.

Domestic tomatoes (left) and three wild relatives. S. pennellii is on the far right.

Domestic tomatoes (left) and three wild relatives. S. pennellii is on the far right.

This study, which builds on the first tomato genome sequence completed just two years ago, shows in great detail how the processes of early domestication and modern breeding influenced the genetic makeup of cultivated tomatoes. (UC Davis researchers also led an effort to sequence the genome of a wild relative of the cultivated tomato.)

Analysis of the genome sequences of these 360 varieties and wild strains shows which regions of the genome were under selection during domestication and breeding. The study identified two independent sets of genes responsible for making the fruit of modern commercial tomatoes 100 times larger than their wild ancestors.

An important finding is that specific regions of the tomato genome were unintentionally depleted in genetic variation: for example, in DNA around genes conferring larger fruit size or genes for resistance to diseases afflicting tomato plants.

These stretches of genetic uniformity illustrate the need to increase overall genetic diversity in modern varieties and highlight the important role that the Rick Tomato Genetics Resource Center and similar collections play in housing much of the genetic variability that will be critical for future breeding and research on tomato.

Plant geneticist Roger Chetelat directs the C.M. Rick Tomato Genetics Resource Center at UC Davis.



More solutions from: University of California, Davis


Website: http://www.ucdavis.edu

Published: October 14, 2014

 

 

 

 

 

 

 

 

 

 

 


Copyright @ 1992-2024 SeedQuest - All rights reserved