News section

home  |  news  |  forum  |  job market  |  calendar  |  yellow pages  |  advertise on SeedQuest  |  contact us 

 

Long sought-after flowering signal found
Lang gesuchter Signalgeber für die Blütenbildung gefunden
Tuebingen, Germany and Norwich, United Kingdom
August 11, 2005

A team of German and British scientists show how plants ensure that flowers are formed at the right time and the right place

A breakthrough in understanding how flowers form, is reported by scientists at the Max Planck Institute for Developmental Biology in Tuebingen, Germany, and the John Innes Centre in Norwich, UK. In an article published in the international journal "Science", they show how a small molecule that is made in leaves is able to induce the formation of flowers at the growing tip of a plant. Because flowers in turn make fruits and seeds, including cereal grains, this new knowledge could have important applications in crop plants (Science, August 12, 2005).

The blossoms of cherry trees are celebrated in many places including the Jefferson Memorial in Washington, DC, or Ueno Park in Tokyo, Japan, because they tell us that spring has finally arrived. As we all know, most plants make flowers only at certain times of the year, the spring blooms of cherry trees being but one example. Plants can use several cues from the environment to choose the season that is right for flowering. For example, some plants such as tulips will not flower unless exposed for several months to winter cold, while others rely on the increase in day length that heralds the arrival of spring.

Scientists have known since the 1930s that plants detect day length with their leaves. Since flowers form typically at the tip of branches, researchers concluded that a signal that induces flowering must travel from the leaves to the site where flowers are initiated. Despite these early findings, little progress has been made in pinpointing the hypothetical flower-inducing substance, dubbed florigen. These difficulties have led many scientists to believe that florigen might be not a single entity, but a complex mixture of molecules. In the new work, two teams, led by Detlef Weigel at the Max Planck Institute in Tuebingen and Philip Wigge at the John Innes Centre, have now identified a molecule, called FT, that has all the hallmarks of florigen. The FT gene is induced in leaves within hours after plants receive a stimulus that promotes flowering, but its product, the FT protein, acts at the growing tips of the plant to activate the flowering process.

The teams had been studying the FT gene, using the small mustard plant Arabidopsis. Although they knew that FT was a potent inducer of flowering, it was unclear how it influenced genes that control the formation of flowers. The breakthrough came with the discovery that FT protein binds to another protein, FD. FD in turn directly acts on genes that turn groups of unspecialised stem cells into flower buds. The FD protein, which in contrast to FT is produced at the tips of branches, is only active when bound by FT protein. Since the FT gene is induced in leaves, but FT protein acts at a distant site, the tip of branches, the authors conclude that the small FT protein must be moving from one place to the other, making it the best known candidate for the mysterious florigen molecule. It remains to be seen whether FT travels directly all the way from leaves to the branch tips, or whether a relay mechanism is involved.

"We discovered the FT gene in the late 1990s, but couldn’t figure out for many years how this small protein controlled the activity of genes that make flowers. Once we saw that FT needs the FD protein, which is present at the growing point of a plant, it made perfect sense," explains Detlef Weigel, Director at the Max Planck Institute for Developmental Biology. "Only when FT and FD join forces in the same cell can they be active."

"The transition to flowering is one of the most important decisions made by plants. It has to be carefully controlled according to the seasons," says Philip Wigge, who recently moved from the Max Planck Institute to become a Group Leader at the John Innes Centre. "For example, plants that need to be fertilized by pollen from other members of the same species, as is the case for cherry trees, need to make sure that they produce flowers at the same time as their neighbours. Requiring two independent components to come together for activation of flowering is a neat trick. One determines the right time of year and the other specifies the right place for the formation of flowers."

The work was carried out in the model plant Arabidopsis thaliana, since this represents the most versatile experimental system for plant biology. The lessons learnt, however, have far-reaching consequences for plant biology, as the FT and FD genes are present throughout the plant kingdom, including important crops such as rice and wheat. When we hear "flowering", we normally think of colorful bouquets or tree blossoms. The most important role of flowers is, however, that they give rise to fruits and seeds, including all the cereal grains, and thus are the basis of much of our daily lives. Because plants use environmental information to determine when to flower, they are geographically limited in the area where they can be grown. Outside their normal range, they will often not flower at all, or will flower too early or too late in the year. Being able to control the flowering process better should help to breed new varieties that can flourish in places where they would normally not flower at the appropriate time.

The Max Planck Society for the Advancement of Science (www.mpg.de) is an independent nonprofit research organization, based in Germany and funded primarily by the Federal government as well as the 16 German States. The 78 institutes of the Max Planck Society perform fundamental research in the interest of the general public and are committed to making the results of their work accessible to the general public.

The John Innes Centre (www.jic.ac.uk) is an independent, international centre of excellence in plant science and microbiology. It carries out fundamental and strategic research and makes its findings available to society. The JIC wins the majority of its funding in open competition from various funding agencies in the UK and worldwide. It is further grant-aided by the UK government's Biotechnology and Biological Sciences Research Council (BBSRC).

Also participating in the study were: Min Chul Kim, Wolfgang Busch, Markus Schmid and Jan Lohmann at the Max Planck Institute in Tübingen, and Katja Jaeger at the John Innes Centre.

The study was funded by grants from the international Human Frontiers Research Organisation, the German Ministry for Education and Research and the Max Planck Society, and by postdoctoral fellowships from the British Wellcome Foundation, the Korea Science and Engineering Foundation and the European Molecular Biology Organisation.


Lang gesuchter Signalgeber für die Blütenbildung gefunden

Deutsch-britisches Forscherteam enthüllt, wie Pflanzen sicher stellen, dass Blüten zur rechten Zeit am richtigen Ort gebildet werden

Über einen Durchbruch im Verständnis, wie Pflanzen ihre Blüten hervorbringen, berichten Forscher des Max-Planck-Instituts für Entwicklungsbiologie in Tübingen und des John Innes Centre in Norwich, Großbritannien, in der Fachzeitschrift "Science". Sie konnten zeigen, dass ein kleines Molekül, das in den Blättern gebildet wird, an den Sprossspitzen die Blütenbildung einleitet. Da alle Früchte und Samen einschließlich Getreide aus Blüten hervorgehen, könnten diese Erkenntnisse einen wichtigen Beitrag zur Zucht leistungs- und anpassungsfähigerer Nutzpflanzen liefern (Science, 12. August 2005).

Die Blüte der Kirschbäume wird an vielen Orten der Welt, wie in Japan oder Washington DC, als Zeichen des Frühlings gefeiert. Dieses Beispiel erinnert daran, dass die meisten Pflanzen nur zu ganz bestimmten Jahreszeiten blühen. Sie orientieren sich dabei an verschiedenen Faktoren in ihrer Umwelt, die ihnen signalisieren, wann sie blühen sollen. Einige Pflanzen, wie beispielsweise Tulpen, blühen nur, wenn sie zuvor einige Monate den tiefen Temperaturen des Winters ausgesetzt waren. Andere wiederum verlassen sich auf die länger werdenden Tage als Zeichen des nahenden Frühlings.

Wissenschaftler wussten bereits seit den 30er Jahren des vergangenen Jahrhunderts, dass Pflanzen die Länge der Tage mit ihren Blättern ermitteln. Da sich Blüten aber normalerweise an den Spitzen der Sprosse bilden, nahmen die Forscher an, dass in den Pflanzen ein Signal von den Blättern zu jenen Stellen gelangen muss, wo die Blüten dann entstehen. Sie postulierten, dass in den Blättern eine Substanz gebildet wird, die in die Sprossspitzen wandert und dort die Blütenbildung induziert. Diese bislang hypothetische Substanz tauften sie "Florigen". Obwohl seit diesen Erkenntnissen ein halbes Jahrhundert vergangen ist, gelang es bisher nicht, das rätselhafte Florigen zu finden. Viele Wissenschaftler begannen deshalb zu glauben, dass Florigen eine komplizierte Mischung aus verschiedenartigen Molekülen sein muss.

Jetzt haben Forscher unter der Leitung von Detlef Weigel am Max-Planck-Institut für Entwicklungsbiologie und Philip Wigge am John Innes Centre ein Molekül - das Protein FT - identifiziert, dass alle Eigenschaften von Florigen aufweist: Schon wenige Stunden, nachdem Pflanzen das Signal zur Bildung von Blüten erhalten haben, wird in ihren Blättern das FT-Gen aktiviert. Das Genprodukt hingegen, das FT-Protein, wirkt nicht in den Blättern, sondern an den Spitzen der Sprosse und löst dort die Blütenbildung aus.

Obwohl man wusste war, dass FT wichtig für die Blütenbildung ist, war nicht klar, wie es jene Gene beeinflusst, die Blüten induzieren. Der Durchbruch kam, als die Forscher entdeckten, dass FT an ein weiteres Protein - FD - bindet. FD seinerseits steuert direkt die Aktivität von Genen, die dazu führen, dass sich Gruppen von unspezialisierten Stammzellen an den Sprossspitzen zu Blüten entwickeln. Im Gegensatz zu FT wird das FD-Protein jedoch nicht in den Blättern, sondern nur an den Spitzen der Sprosse hergestellt. Entscheidend ist hierbei, dass es nur dann aktiv ist, wenn es das FT-Protein bindet. Da das FT-Gen in den Blättern aktiv ist, aber das FT-Protein an den mitunter weit entfernten Sprossspitzen FD aktivieren muss, schließen die Forscher, dass das kleine FT-Protein zu den Orten wandern muss, an denen die Blüten entstehen. Damit ist das FT-Protein der beste bisher bekannte Kandidat für das rätselhafte Florigen-Molekül. Allerdings ist noch offen, ob das FT-Protein von den Blättern direkt zu den Sprossspitzen wandert oder ob das Signal in einer Art Staffellauf über Zwischenstufen weitergeleitet wird.

"Wir haben das FT-Gen in den späten 90er Jahren entdeckt, konnten uns aber über etliche Jahre nicht vorstellen, wie dieses kleine Protein die Aktivität der Gene steuert, die für die Bildung von Blüten nötig sind. Als wir sahen, dass FT das FD-Protein braucht, das an den Sprossspitzen der Pflanze gebildet wird, wurde uns auf einmal alles klar", erklärt Detlef Weigel, Direktor am Max-Planck-Institut für Entwicklungsbiologie in Tübingen. "Nur wenn FT und FD in der selben Zelle zusammenarbeiten, sind sie aktiv."

"Das Blühen einzuleiten ist eine der wichtigsten Entscheidungen, die Pflanzen treffen müssen. Es ist deshalb unerlässlich, dass diese Entscheidung präzise auf die Jahreszeit abgestimmt werden", sagt Philip Wigge, der unlängst vom Max-Planck-Institut an das John Innes Centre gewechselt ist, um dort eine eigene Arbeitsgruppe aufzubauen. "Pflanzen, die durch Pollen von anderen Mitgliedern ihrer Art bestäubt werden, wie beispielsweise Kirschbäume, müssen sicherstellen, dass sie zur selben Zeit blühen wie ihre Nachbarn. Es ist ein raffinierter Trick der Natur, dass zwei Komponenten zusammen kommen müssen, damit sich Blüten bilden können. Eine bestimmt, zu welcher Jahreszeit die Pflanze blüht, die andere, wo an der Pflanze sich die Blüten bilden."

Die Forscher benutzten für ihre Studien die Ackerschmalwand (Arabidopsis thaliana), die aufgrund ihrer vielen experimentellen Vorzüge als Modellpflanze breite Verwendung findet. Die Ergebnisse sind jedoch von deutlich breiterer Bedeutung, denn FT- und FD-Gene kommen im gesamten Pflanzenreich vor, auch in so bedeutenden Nutzpflanzen wie Reis und Weizen.

Bei dem Begriff "Blüten" denken wir zumeist an schöne Blumen oder blühende Bäume. Doch die wichtigste Aufgabe von Blüten ist Früchte und Samen einschließlich der Getreidekörner hervorzubringen. Sie bilden somit die Grundlage für einen großen Teil unserer Nahrung. Da Pflanzen Informationen aus ihrer Umwelt nutzen, um festzulegen, wann sie blühen sollten, sind die Regionen, in denen man bestimmte Pflanzen anbauen kann, begrenzt. Außerhalb ihres normalen Verbreitungsgebietes würden Pflanzen entweder gar nicht oder zu früh bzw. zu spät blühen. Ein besseres Verständnis der Moleküle, die zur Bildung von Blüten führen, könnte also dazu beitragen, neue Sorten zu züchten, die an Orten gedeihen können, an denen sie dies normalerweise nicht tun würden.


Über die Max-Planck-Gesellschaft
Die Max-Planck-Gesellschaft zur Förderung der Wissenschaften (www.mpg.de) ist eine unabhängige gemeinnützige Forschungsorganisation. Sie wird überwiegend aus öffentlichen Mitteln der Bundesregierung und der 16 Bundesländer finanziert. Die 78 Institute der Max-Planck-Gesellschaft betreiben Grundlagenforschung im Dienste der Allgemeinheit und verpflichten sich, die Ergebnisse ihrer Forschung der Öffentlichkeit zugänglich zu machen.


Über das John Innes Centre
Das John Innes Centre (www.jic.ac.uk) ist ein unabhängiges internationales Exzellenzzentrum für Pflanzenforschung und Mikrobiologie. Es widmet sich sowohl der Grundlagen- als auch der angewandten Forschung und macht seine Forschungsergebnisse öffentlich zugänglich. Das JIC wird vorwiegend aus nationalen und internationalen Drittmitteln finanziert. Zudem wird es durch den Biotechnology and Biological Sciences Research Council (BBSRC) der britischen Regierung gefördert.

An dieser Studie haben zudem teilgenommen: Min Chul Kim, Wolfgang Busch, Markus Schmid und Jan Lohmann am Tübinger Max-Planck-Institut sowie Katja Jaeger am John Innes Centre.

Das Projekt wurde finanziell unterstützt durch die internationale Human Frontiers Research Organisation, das Bundesministerium für Bildung und Forschung (BMBF) und die Max-Planck-Gesellschaft sowie durch Postdoktoranden-Stipendien der britischen Wellcome Foundation, der Korean Science and Engineering Foundation und der Europäischen Molekularbiologie Organisation (EMBO).

News release

Other news from this source

13,183

Back to main news page

The news release or news item on this page is copyright © 2005 by the organization where it originated.
The content of the SeedQuest website is copyright © 1992-2005 by SeedQuest - All rights reserved
Fair Use Notice